Imaging scattering orientation with spatial frequency domain imaging.
نویسندگان
چکیده
Optical imaging techniques based on multiple light scattering generally have poor sensitivity to the orientation and direction of microscopic light scattering structures. In order to address this limitation, we introduce a spatial frequency domain method for imaging contrast from oriented scattering structures by measuring the angular-dependence of structured light reflectance. The measurement is made by projecting sinusoidal patterns of light intensity on a sample, and measuring the degree to which the patterns are blurred as a function of the projection angle. We derive a spatial Fourier domain solution to an anisotropic diffusion model. This solution predicts the effects of bulk scattering orientation on the amplitude and phase of the projected patterns. We introduce a new contrast function based on a scattering orientation index (SOI) which is sensitive to the degree to which light scattering is directionally dependent. We validate the technique using tissue simulating phantoms, and ex vivo samples of muscle and brain. Our results show that SOI is independent of the overall amount of bulk light scattering and absorption, and that isotropic versus oriented scattering structures can be clearly distinguished. We determine the orientation of subsurface microscopic scattering structures located up to 600 μm beneath highly scattering (μ(') (s) = 1.5 mm(-1)) material.
منابع مشابه
Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures.
The measurement of soft tissue fiber orientation is fundamental to pathophysiology and biomechanical function in a multitude of biomedical applications. However, many existing techniques for quantifying fiber structure rely on transmitted light, limiting general applicability and often requiring tissue processing. Herein, we present a novel wide-field reflectance-based imaging modality, which c...
متن کاملAttenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes
Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...
متن کاملAdvanced demodulation technique for the extraction of tissue optical properties and structural orientation contrast in the spatial frequency domain.
We have developed a method for extracting spatial frequency information content from biological tissue, which is used to calculate tissue optical properties and determine tissue structural orientation. This demodulation method employs a two-dimensional Hilbert transform using a spiral phase function in Fourier space. The approach presented here allows for the determination of tissue optical pro...
متن کاملSources of errors in spatial frequency domain imaging of scattering media.
Knowledge of the impact of potential sources of error in spatial frequency domain imaging (SFDI) is essential for the quantitative characterization of absorption and scattering in tissue and other turbid media. We theoretically investigate the error in the derived absorption and scattering parameter, subject to typical experimental and theoretical sources of errors. This provides a guideline to...
متن کاملA Novel Fast Near-field Electromagnetic Imaging Method for Full Rotation Problem
A fast method for electromagnetic imaging from monostatic full rotational near-field scattering is proposed in this paper. It is based on circular spectrum theory which exploits the Fourier decomposition of the targets distribution instead of point by point imaging in earlier works. The novelty of the proposed method is that it simplifies the relationship between the spatial frequency domain an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 16 12 شماره
صفحات -
تاریخ انتشار 2011